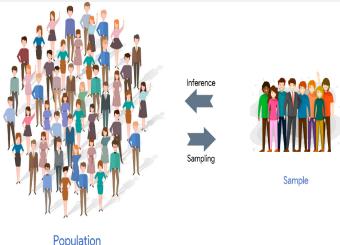
Занятие 1. Основы статистики: повторение

13 января 2021


Что такое статистическая инференция (statistical inference)? Какие задачи мы решаем в рамках статистики?

Что такое статистическая инференция (statistical inference)? Какие задачи мы решаем в рамках статистики?

Ответ

Статистическая инференция – перенос результатов с выборки на генеральную совокупность. В соответствии с этим важно разделять генеральные параметры (population parameters) и оценки параметров (sample statistics – estimates of parameters).

Иллюстрация идеи инференции

Population

Каким образом можно осуществить инференцию?

Каким образом можно осуществить инференцию?

Ответ

- оценивание параметров
 - точечное оценивание (point estimation)
 - интервальное оценивание (interval estimation)
- проверка гипотез

Приведите примеры генеральных параметров и оценок.

Приведите примеры генеральных параметров и оценок.

Ответ

Параметр	Оценка
Мат. ожидание $E(X)$	Среднее арифметическое
Медиана	Выборочная медиана
Стандартное отклонение: σX	$\hat{\sigma}X = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$

$$\begin{pmatrix} EX_1 \\ \dots \\ EX_n \end{pmatrix}$$

$$\begin{pmatrix} EX_1 \\ \dots \\ EX_n \end{pmatrix}$$

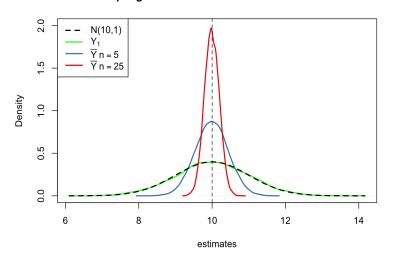
$$\begin{pmatrix} X & Y \\ X & Var(X) & Cov(X,Y) \\ Y & Cov(X,Y) & Var(Y) \end{pmatrix}$$

$$\begin{pmatrix} EX_1 \\ \dots \\ EX_n \end{pmatrix}$$

$$\begin{pmatrix} X & Y \\ X & Var(X) & Cov(X,Y) \\ Y & Cov(X,Y) & Var(Y) \end{pmatrix}$$

$$\begin{pmatrix} X & Y \\ X & 1 & Cor(X,Y) \\ Y & Cor(X,Y) & 1 \end{pmatrix}$$

К оценкам с какими свойствами мы стремимся?


К оценкам с какими свойствами мы стремимся?

Ответ

- несмещенные (unbiased): $E(\hat{\theta}) = \theta$
- 2 эффективные (efficient): минимальная вариация
- $oldsymbol{\circ}$ состоятельные (consistent): при увеличении выборки $\hat{\theta}$ сходится по вероятности к θ

Несмещенные оценки с разными вариациями

Sampling Distributions of Unbiased Estimators

Каковы ограничения точечного оценивания?

Каковы ограничения точечного оценивания?

Ответ

Точечные оценки – это конкретные значения. В этом случае у нас нет информации относительно степени уверенности, насколько мы близки к истинному параметру.

Какой принцип построения доверительных интервалов? Как их интерпретировать?

Какой принцип построения доверительных интервалов? Как их интерпретировать?

Ответ

Рассмотрим пример построения доверительного интервала для

среднего:
$$\left[\overline{x} - Z_c \times \frac{\hat{\sigma}X}{\sqrt{n}}; \overline{x} + Z_c \times \frac{\hat{\sigma}X}{\sqrt{n}}\right]$$

К примеру, если мы строим 95% доверительный интервал, мы с 95% уверенностью можем говорить, что доверительный интервал накрывает истинное значение параметра. Схема многократного сэмплинга.

4 □ > 4 ⑤ > 4 ≧ >